Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell ; 186(1): 112-130.e20, 2023 01 05.
Article in English | MEDLINE | ID: covidwho-2130296

ABSTRACT

How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.


Subject(s)
COVID-19 , Respiratory System , SARS-CoV-2 , Humans , Cilia/physiology , Cilia/virology , COVID-19/virology , Respiratory System/cytology , Respiratory System/virology , SARS-CoV-2/physiology , Microvilli/physiology , Microvilli/virology , Virus Internalization , Epithelial Cells/physiology , Epithelial Cells/virology
2.
Gene ; 820: 146235, 2022 Apr 30.
Article in English | MEDLINE | ID: covidwho-1778131

ABSTRACT

The relationship of single nucleotide polymorphisms (SNPs) in patatin-like phospholipase domain containing 3 (PNPLA3) rs738409, transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, and membrane bound O-acyltransferase domain containing 7 (MBOAT7) rs641738 with outcomes in patients with hepatitis C infection (HCV) is unclear. This study aimed to evaluate the association of PNPLA3, TM6SF2, and MBOAT7 with the baseline fibrosis stage and progression of liver fibrosis after HCV eradication with direct antiviral agents (DAAs). A total of 171 patients who received the DAAs at the Peking University First Hospital between June 2015 and June 2020 were included in the retrospective cohort. Transient elastography was used to determine liver stiffness measurements (LSMs) at the baseline, the end of treatment (EOT), 24 weeks after treatment (W24), and the last follow-up (LFU) visit. We used the QIAamp Blood Mini Kit (Qiagen) for whole blood genomic DNA extraction and polymerase chain reaction for PNPLA3, TM6SF2, and MBOAT7 amplification of the target gene. The PNPLA3 rs738409 SNP was associated with the baseline fibrosis stage in multivariate logistic regression analysis adjusted for other factors, and the adjusted odds ratio (OR) for advanced fibrosis (≥F3) at baseline was 2.52 (95% confidence interval[CI] = 1.096-5.794, p = 0.03). The G and GG alleles were predictive of advanced fibrosis (OR = 1.98, 95% CI = 1.021-4.196, p = 0.015; OR = 3.12, 95% CI = 1.572-6.536, p = 0.005). Similarly, the OR of TM6SF2 rs58542926 at baseline was 2.608 (95% CI = 1.081-6.29, p = 0.033). T and TT alleles were predictive of advanced fibrosis (OR = 2.3, 95% CI = 1.005-5.98, p = 0.007; OR = 3.05, 95% CI = 1.32-6.87, p = 0.001). After adjustment, the MBOAT7 rs641738 T plus TT alleles were not independently associated with the baseline fibrosis stage (95% CI = 0.707-2.959, p = 0.312). At the EOT, there were 35 patients and 136 patients in the fibrosis improvement and fibrosis non-improvement group, respectively. Logistic regression analysis showed that the G allele in PNPLA3 rs738409 was associated with fibrosis progression (OR = 2.47, 95% CI = 1.125-5.89, p = 0.003). The GG alleles were predictive of fibrosis progression (OR = 2.95, 95% CI = 1.35-6.35, p = 0.005). Similarly, the ORs of the T and TT alleles in TM6SF2 rs58542926 for fibrosis progression were 1.82 and 2.21, respectively (95% CI = 1.006-5.373, p = 0.045; 95% CI = 1.18-5.75, p = 0.01). At the W24 visit, we found that there was an association between the G allele in PNPLA3 rs738409 and fibrosis progression (OR = 2.218, 95% CI = 1.095-5.631, p = 0.015). Moreover, GG alleles were also predictive for fibrosis progression (OR = 2.558, 95% CI = 1.252-5.15, p = 0.008). Similarly, the OR of T allele and TT alleles in TM6SF2 rs58542926 for fibrosis progression was 2.056 and 2.652 (95% CI = 1.013-5.592, p = 0.038; 95% CI = 1.25-5.956, p = 0.015). For additional affirmation, we surveyed fibrosis progression utilizing the Cox proportional hazards model. G and GG alleles in PNPLA3 rs738409 were associated with an increased risk of progression to advanced fibrosis in multivariate model (hazard ratio [HR]1.566, 95% CI = 1.02-2.575, p = 0.017; and HR2.109, 95% CI = 1.36-3.271, p = 0.001, respectively). Besides, T and TT alleles in TM6SF2 rs58542926 were associated with an increased risk of progression to advanced fibrosis in multivariate model (HR = 1.322, 95% CI = 1.003-1.857, p = 0.045; and HR = 1.855, 95% CI = 1.35-2.765, p = 0.006, respectively). In contrast, rs641738 in MBOAT7 did not show a significant trend in the univariate and multivariate models. The PNPLA3 CG/GG SNP at rs738409 and TM6SF2 CT/TT SNP at rs58542926 were associated with the baseline fibrosis stage and fibrosis progression after HCV eradication with DAAs.


Subject(s)
Acyltransferases/economics , Acyltransferases/genetics , Liver Cirrhosis/genetics , Membrane Proteins/economics , Membrane Proteins/genetics , Phospholipases A2, Calcium-Independent/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Alleles , Disease Progression , Female , Genetic Predisposition to Disease , Hepacivirus , Hepatitis C/complications , Hepatitis C/virology , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/genetics , Prognosis , Retrospective Studies
3.
J Clin Hypertens (Greenwich) ; 24(3): 224-233, 2022 03.
Article in English | MEDLINE | ID: covidwho-1673151

ABSTRACT

Hypertension is the most common comorbidity in patients with coronavirus disease 2019 (COVID-19) and increases in-hospital mortality. Day-by-day blood pressure (BP) variability (BPV) is associated with clinical outcomes in hypertensive patients. However, little information is available on the association of BPV with the outcomes of COVID-19 patients with hypertension. This study aimed to demonstrate whether day-by-day in-hospital BPV had prognostic significance in these patients. The authors included 702 COVID-19 patients with hypertension from Huoshenshan Hospital (Wuhan, China), who underwent valid in-hospital BP measurements on at least seven consecutive days. Day-by-day BPV was assessed by standard deviation (SD), coefficient of variation (CV), and variation independent of mean (VIM). Overall, patients with severe COVID-19 and non-survivors had higher BPV than moderate cases and survivors, respectively. Additionally, higher BPV was correlated with greater age and higher levels of C-reactive protein, procalcitonin, high-sensitive cardiac troponin I, and B-type natriuretic peptide. In multivariable Cox regression, SD of systolic BP (SBP) was predictive of mortality [hazard ratio (HR) 1.17, 95% confidence interval (CI) 1.05-1.30] as well as acute respiratory distress syndrome (ARDS) (HR 1.09, 95% CI 1.01-1.16). Similar trends were observed for CV and VIM of SBP, but not indices of diastolic BP variability. The authors demonstrated that day-by-day in-hospital SBP variability can independently predict mortality and ARDS in COVID-19 patients with hypertension. And high BPV might be correlated with severe inflammation and myocardial injury. Further studies are needed to clarify whether early reduction of BPV will improve the prognosis of these patients.


Subject(s)
COVID-19 , Hypertension , Blood Pressure/physiology , COVID-19/complications , COVID-19/epidemiology , Hospitals , Humans , Hypertension/complications , Hypertension/epidemiology , Prognosis
4.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1580401

ABSTRACT

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Subject(s)
Adenoviridae/drug effects , Antiviral Agents/pharmacology , Coronavirus/drug effects , HIV-1/drug effects , RNA Processing, Post-Transcriptional/drug effects , Thiazoles/pharmacology , Virus Replication/drug effects , Adenoviridae/physiology , Antiviral Agents/chemistry , Cell Line , Coronavirus/classification , Coronavirus/physiology , Gene Expression/drug effects , HIV-1/physiology , Humans , RNA Splicing Factors/metabolism , RNA, Viral/metabolism , Thiazoles/chemistry
5.
Cell Metab ; 33(8): 1565-1576.e5, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1343160

ABSTRACT

Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic ß cells can be infected by SARS-CoV-2 and cause ß cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in ß cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic ß cells in patients who succumbed to COVID-19 and selectively infects human islet ß cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces ß cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic ß cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce ß cell killing.


Subject(s)
COVID-19/virology , Diabetes Mellitus/virology , Insulin-Secreting Cells/virology , Neuropilin-1/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization , A549 Cells , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antigens, CD/metabolism , Apoptosis , Apoptosis Regulatory Proteins/metabolism , COVID-19/complications , COVID-19/diagnosis , Case-Control Studies , Diabetes Mellitus/diagnosis , Diabetes Mellitus/metabolism , Female , Host-Pathogen Interactions , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Male , Middle Aged , Receptors, Transferrin/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism
6.
Front Physiol ; 12: 632123, 2021.
Article in English | MEDLINE | ID: covidwho-1119551

ABSTRACT

Male novel coronavirus disease (COVID-19) patients tend to have poorer clinical outcomes than female patients, while the myocardial injury is strongly associated with COVID-19-related adverse events. Owing to a lack of corresponding data, we aimed to investigate the sex differences in the incidence of myocardial injury in COVID-19 patients and to identify the potential underlying mechanisms, which may partly account for the sex bias in the incidence of adverse events. This retrospective study included 1,157 COVID-19 patients who were hospitalized in Huoshenshan Hospital from 12 March 2020 to 11 April 2020. Data on the patients' demographic characteristics, initial symptoms, comorbidities and laboratory tests were collected. Totally, 571 (49.4%) female and 586 (50.6%) male COVID-19 patients were enrolled. The incidence of myocardial injury was higher among men than women (9.2 vs. 4.9%, p = 0.004). In the logistic regression analysis, age, and chronic kidney disease were associated with myocardial injury in both sexes. However, hypertension [odds ratio (OR) = 2.25, 95% confidence interval (CI) 1.20-4.22], coronary artery disease (OR = 2.46, 95% CI 1.14-5.34), leucocyte counts (OR = 3.13, 95% CI 1.24-7.86), hs-CRP (OR = 4.45, 95% CI 1.33-14.83), and D-dimer [OR = 3.93 (1.27-12.19), 95% CI 1.27-12.19] were independent risk factors only in the men. The correlations of hs-CRP and D-dimer with hs-cTnI and BNP were stronger in the men. The incidence of myocardial injury in COVID-19 patients is sex-dependent, predominantly in association with a greater degree of inflammation and coagulation disorders in men. Our findings can be used to improve the quality of clinical management in such settings.

7.
J Clin Hypertens (Greenwich) ; 22(11): 1974-1983, 2020 11.
Article in English | MEDLINE | ID: covidwho-810865

ABSTRACT

Hypertension is proved to be associated with severity and mortality in coronavirus disease 2019 (COVID-19). However, little is known about the effects of pre-admission and/or in-hospital antihypertension treatments on clinical outcomes. Thus, this study aimed to investigate the association between in-hospital blood pressure (BP) control and COVID-19-related outcomes and to compare the effects of different antihypertension treatments. This study included 2864 COVID-19 patients and 1628 were hypertensive. Patients were grouped according to their BP during hospitalization and records of medication application. Patients with higher BP showed worse cardiac and renal functions and clinical outcomes. After adjustment, subjects with pre-admission usage of renin-angiotensin-aldosterone system (RAAS) inhibitors (HR = 0.35, 95%CI 0.14-0.86, P = .022) had a lower risk of adverse clinical outcomes, including death, acute respiratory distress syndrome, respiratory failure, septic shock, mechanical ventilation, and intensive care unit admission. Particularly, hypertension patients receiving RAAS inhibitor treatment either before (HR = 0.35, 95%CI 0.13-0.97, P = .043) or after (HR = 0.18, 95%CI 0.04-0.86, P = .031) admission showed a significantly lower risk of adverse clinical outcomes than those receiving application of other antihypertensive medicines. Furthermore, consecutive application of RAAS inhibitors in COVID-19 patients with hypertension showed better clinical outcomes (HR = 0.10, 95%CI 0.01-0.83, P = .033) than non-RAAS inhibitors users. We revealed that COVID-19 patients with poor BP control during hospitalization had worse clinical outcomes. Compared with other antihypertension medicines, RAAS inhibitors were beneficial for improving clinical outcomes in COVID-19 patients with hypertension. Our findings provide direct evidence to support the administration of RAAS inhibitors to COVID-19 patients with hypertension before and after admission.


Subject(s)
Blood Pressure/drug effects , COVID-19/virology , Hypertension/drug therapy , Renin-Angiotensin System/drug effects , SARS-CoV-2/drug effects , Aged , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/therapeutic use , Blood Pressure Determination/methods , Blood Pressure Determination/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , Case-Control Studies , China/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Hypertension/complications , Hypertension/mortality , Male , Middle Aged , Outcome Assessment, Health Care , Retrospective Studies , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL